лекция п

Экология микроорганизмов. Нормальная микробиота организма человека. Микробиота полости рта и ротовой жидкости. Влияние факторов окружающей среды на микроорганизмы. Стерилизация и дезинфекция. Фаги. Генетика микроорганизмов, виды генетической изменчивости. Основы антимикробной терапии, химиотерапевтические препараты. Антибиотики.

Для студентов Стоматологического факультета Доцент Гурбанова С.Ф

План лекции

- Экология микроорганизмов
- Нормальная микрофлора организма, ее роль в физиологических и патологических процессах. Дисбактериоз
- Микрофлора ротовой полости и ротовой жидкости
- Нормальный микробиоценоз ротовой полости (аутохтонная и аллохтонная микрофлора). Микробные ассоциации. Механизм их развития
- Типы взаимоотношений между ассоциантами и с тканями ротовой полости
- Основные представители резидентной микрофлоры ротовой полости, их свойства, особенности распространения микрофлоры ротовой полости в различных биотопах
- Ротовая жидкость важнейший биотоп ротовой полости. Микробиота, ферменты и антимикробные вещества ротовой жидкости
- ▶ Влияние физических факторов на микроорганизмы. Методы стерилизации. Влияние химических факторов на микроорганизмы, понятие о дезинфекции. Основные группы дезинфицирующих веществ, применяемых в микробиологической практике.
- Понятие об асептике и антисептике
- Фаги
- **Г**енетика микроорганизмов
- Организация генетического аппарата бактерий (хромосома и плазмиды)
- Типы ненаследственной и наследственной изменчивости
- Трансформация, трансдукция и конъюгация. Их механизм
- Генетика вирусов
- Применение генетических методов в диагностике
- ▶ Основные принципы антимикробной химиотерапии. Основные группы антимикробных препаратов
- ▶ Синтетические химиотерапевтические препараты
- Антибиотики, их классификация по химическому составу, механизму действия и спектру активности
- Правила применения антибиотиков
- Факторы, способствующие развитию резистентности у бактерий. Возможные осложнения, связанные с влиянием антибиотиков.

Экология микроорганизмов

- > Экология микроорганизмов это наука, которая изучает взаимоотношения микроорганизмов друг с другом и с окружающей средой.
- **Биоценоз** совокупность живых организмов, обитающих на определенной территории.
- ▶ Микробиоценоз сообщество микроорганизмов, обитающих на определенных участках среды. Биотоп участок суши, водоема или часть живого организма, где обитают представители сообщества.

Жизнедеятельность микроорганизмов - необходимое условие существования на Земле органического мира.

Благодаря деятельности микробов осуществляется:

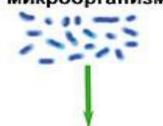
- Минерализация органических остатков
- Они принимают самое активное участие в процессах формирования почв, образования селитры, различных руд, известняков, нефти, каменного угля, торфа.
- Микроорганизмы участвуют в процессах самоочищения окружающей среды.
- Их жизнедеятельность лежит в основе промышленных процессов, связанных с выпуском антибиотиков, витаминов, стимуляторов роста, кормов для скота.

Микробы — нормальные обитатели организма человека или животного стали неотъемлемыми спутниками макроорганизма и играют значительную роль в их жизни.

Так представители нормальной микрофлоры кишечника завершают переваривание питательных веществ, способствуют более эффективному их использованию макроорганизмом. Многие микробы обитающие в кишечнике, являются антагонистами гнилостных и болезнетворных бактерий, а также вырабатывают витамины, которые используются организмом человека или животного.

Нормальная микрофлора организма человека

- Различают постоянную и транзиторную микрофлору
- ▶ Постоянная или резидентная (индигенная, автохтонная) представлена микробами, постоянно присутствующими в организме.
- Она представлена облигатной (бифидобактерии, лактобактерии, бактероиды, кишечные палочки) и факультативной (стафилококки, стрептококки, клебсиеллы, клостридии) микрофлорой
- ► *Транзиторная микрофлора* (аллохтонная) не спосо на к длительному существованию в организме


Популяция бактерий это сообщество живущее по социальным законам

БИОПЛЕНКИ

- Высокоорганизованные сообщества бактерий, защищенных внеклеточным полимерным матриксом. Биопленки основная стратегия выживания бактерий в окружающей среде.
- С образованием биопленок связывают развитие хронических инфекций возникших в результате медицинского имплантирования

(катетеров, протезов)

свободные микроорганизмы

поверхностный рост, образование монослоя

прикрепление

пипи IV

QUORUM SENSING

Межклеточный механизм бактериального общения. По типу quorum sensing регулируют физиологические процессы: биолюминесценцию, синтез антибиотиков и детерминант вирулентности, перенос плазмид.

зрелая биопленка

кворум

образование микроколоний

Микрофлора кожи

Микроорганизмы

Staphylococcus epidermidis

Staphylococcus aureus

Propionobacterium acne

р. Corynebacterium (дифтероиды)

p. Lactobacillus

Streptococcus pyogenes

p.Candida

Malassezia furfur

Морфологические особенности

Грам(+) гроздевидные кокки

Грам(+) гроздевидные кокки

Грам(-) плеоморфные палочки

Грам(+) плеоморфные палочки

Грам(+) палочки

Грам(+) кокки

Дрожжеподобные грибы

Дрожжеподобные грибы

Микрофлора дыхательных путей

Анатомическая область	Микроорганизм	Морфологические свойства
Верхние дыхательные пути (полость носа и носоглотка)	Staphylococcus aureus Зеленящие стрептококки Streptococcus pneumoniae Branhamella catarrhalis p.Corynebacterium (дифтероиды) p.Haemophilus p.Bacteroides p.Actinomyces	Грам(+) гроздьевидные кокки Грам(+) гроздьевидные кокки Грам(+) кокки в виде цепочек Грам(+) диплококки Грам(-) коккобактерии Грам(+) плеоморфные палочки Грам(-) плеоморфные палочки Грам(-) плеоморфные палочки Грам(-) плеоморфные палочки Грам(+) палочки, или нитевидные, образующие мицелий
Нижние дыхательные пути (трахея, бронхи, бронхиолы, легкие)	Микроорганизмы не встречаются	

Нормальная микрофлора пищеварительного тракта

Анатомическая область	Микроорганизм	Морфологические особенности
Ротовая полость		
Слюна и зубы	p.Streptococcus p. Lactobacillus p.Veilonella p.Bacteroides Fusobacteria p.Actinomyces	Грам(+) кокки в виде цепочек Грам(+) палочки Грам (-) диплококки Грам(-) плеоморфные палочки Грам(-) палочки Грам(+) палочки, или нитевидные, образующие мицелий
Глотка, глоточные миндалины	p.Streptococcus Branhamella catarrhalis p. Corynebacterium (дифтероиды) p. Staphylococcus	Грам(+) кокки в виде цепочек Грам(-) коккобактерии Грам(+) плеоморфные палочки Грам(+) гроздьевидные кокки
Пищевод	Микроорганизмы слюны и пищевых масс	
Желудок 11	p.Lactobacillus p.Corynebacterium (дифтероиды) p.Candida	Грам(+) палочки Грам(+) плеоморфные палочки Дрожжеподобные грибы

Нормальная микрофлора пищеварительного тракта

Анатомическая область	Микроорганизм	Морфологические свойства
Тонкая кишка	p.Lactobacillus p.Enterococcus p. Bacteroides p.Candida	Грам(+) палочки Грам(+)кокки Грам(-) плеоморфные палочки Дрожжеподобные грибы
Толстая кишка	p.Bacteroides p.Bifidobacterium Сем-во Enterobacteriaceae p.Enterococcus p.Clostridium p.Fusobacterium p.Lactobacillus p.Staphylococcus p.Peptostreptococcus p.Candida Entamoeba coli p.Trichomonas	Грам(-) плеоморфные палочки Грам(+) палочки Грам(-) палочки Грам(+) диплококки Грам(+) спорообразующие палочки Грам(-) палочки Грам(-) палочки Грам(+) палочки Грам(+) гроздьевидные кокки Грам(+) кокки в виде цепочек Дрожжеподобные грибы Рrotozoa Protozoa
12		

Основные биотопы полости рта

- Слизистая оболочка
- **▶** Протоки слюнных желез
- **▶** Слюна
- **▶** Десневая жидкость
- Ротовая жидкость
- ▶ Зубные бляшки

НОРМАЛЬНАЯ МИКРОФЛОРА ПОЛОСТИ РТА

АУТОХТОННЫЕ

АЛЛОХТОННЫЕ

РЕЗИДЕНТНЫЕ (ПОСТОЯННО ОБИТАЮЩИЕ) ТРАНЗИТОРНЫЕ (ВРЕМЕННО ПРИСУТСТВУЮЩИЕ)

ПОПАДАЮТ В ПОЛОСТЬ РТА ИЗ ДРУГИХ БИОТОПОВ

АЭРОБНАЯ ФЛОРА

ΓΡΑΜ(+)

СТРЕПТОКОККИ

S. hominis, S. mitis, S.sanguis, S. mutans

КОРИНЕБАКТЕРИИ

ЛАКТОБАЦИЛЛЫ

L.acidophilus, L.fermentum, L.salivarius

ΓΡΑΜ (-)

НЕЙССЕРИИ

N.sicca, N.perflava, N.subflava

ГЕМОФИЛЬНЫЕ БАКТЕРИИ

H.influenzae, H.parainluenzae, H.haemolyticus

АНАЭРОБНАЯ ФЛОРА

ΓΡΑΜ(+)

ПЕПТОКОККИ *P. niger*

пептострептококки *P. prevotii*

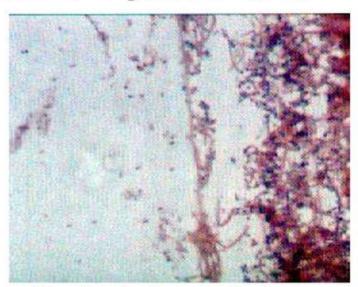
АКТИНОМИЦЕТЫ A.israelii, A. viscosus

БИФИДОБАКТЕРИИ

ΓΡΑΜ (-)

БАКТЕРОИДЫ (также порфиромонады и превотеллы)

ФУЗОБАКТЕРИИ F.plauti, F. nucleatum


ЛЕПТОТРИХИ L.buccalis

ПРОЧИЕ: ТРЕПОНЕМЫ (T. macrodenticum, T. microdenticum), МИКОПЛАЗМЫ (M. orale, M. pneumoniae), ГРИБЫ р. Candida, ПРОСТЕЙШИЕ (E. gingivalis, T. tenax)

МИКРОФЛОРА РОТОВОЙ ПОЛОСТИ

В ротовой полости на бактерии действует слюна, смывающая их и содержащая большой набор антимикробных веществ. Среди бактерий доминируют α-гемолитические стрептококки, составляющие до 60% всей микрофлоры ротоглотки. Встречаются также:

- □ бактероиды, фузобактерии, вей-лонеллы, актиномицеты и др.;
 - нейссерии, непатогенные кори-небактерии, молочнокислые бак-терии, стафилококки, спирохеты;
- □ простейшие (Entamoeba buccalis, Entamoeba dentalis, Trichomonas buccalis).

Fusobacterium nucleatum, окр. по Граму

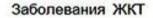
Постоянные обитатели способны к адгезии поверхности зубов и слизистой оболочки. Состав микрофлоры зависит от состояния организма, состава пищи, гигиены полости рта.

Факторы, влияющие на формирование микрофлоры ротовой полости.

Видовой состав микробной флоры полости рта в норме довольно постоянен. Вместе с тем количество микробов может значительно колебаться. На формирование микрофлоры ротовой полости могут влиять следующие факторы:

- ос1) состояние слизистой ротовой полостие особенности строения (складкиия слизистой, десневые карманы, слущенный эпителий);
 - 2) температура, pH, окислительно-восстановительный потенциал ротовой полости;
 - 3) секреция слюны и ее состав;
 - 4) состояние зубов;
 - 5) состав пищи;
 - 6) гигиеническое состояние полости рта;

Недустворжальные функции слюноотделения, жевания и глотания урение табака


8) естественная резистентность организма н

Диабет

Факторы, влияющие на формирование микрофлоры ротовой полости.

- Видовой состав микробной флоры полости рта в норме довольно постоянен. Вместе с тем количество микробов может значительно колебаться. На формирование микрофлоры ротовой полости могут влиять следующие факторы:
- 1) состояние слизистой ротовой полости, особенности строения (складки слизистой, десневые карманы, слущенный эпителий);
- 2) температура, рН, окислительно-восстановительный потенциал ротовой полости;
- 3) секреция слюны и ее состав;
- 4) состояние зубов;
- 5) состав пищи;
- 6) гигиеническое состояние полости рта;
- 7) нормальные функции слюноотделения, жевания и глотания;
- 8) естественная резистентность организма.

Динамика формирования микробиоценоза полости рта.

Формирование микробиоценоза полости рта представляет собой многоступенчатый процесс взаимодействия различных его составляющих. Колонизация полости рта микробами зависит:

- от способности микроорганизмов прилипать к различным поверхностям, прежде всего - к эпителию и эмали;
- от взаимосвязи метаболизма различных групп микроорганизмов.

Механизм формирования микробных ассоциаций

Чтобы поселиться в полости рта, микроорганизмы должны сначала прикрепиться к поверхности слизистой оболочки или к зубам. Адгезия (прилипание) необходима для обеспечения устойчивости к току слюны и последующей колонизации (размножению).

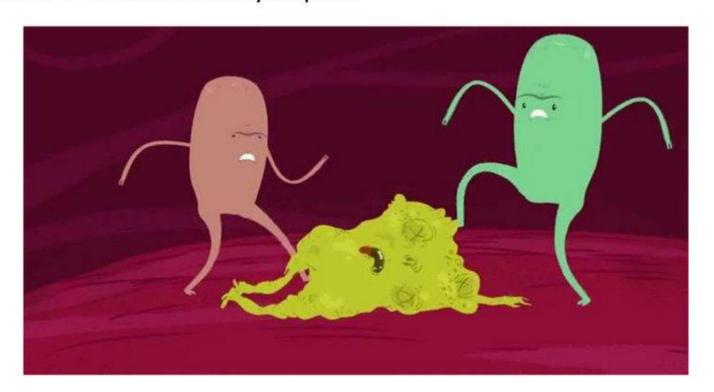
Адгезия опосредована адгезинами поверхности бактерий и рецепторами эпителиоцитов ротовой полости, структурами зубной эмали.

В процессе адгезии со стороны грамотрицательных бактерий могут участвовать пили или фимбрии, в то время как у грамположительных бактерий в качестве адгезинов могут выступать липотейхоевые кислоты.

Механизм формирования микробных ассоциаций

- В процесс адгезии вовлекаются специфические рецепторы эпителиоцитов ротовой полости (специфические взаимодействия имеются и при адгезии к поверхности зубов).
- Некоторые бактерии не имеют собственных адгезинов, тогда они закрепляются на поверхности слизистых, используя адгезины других микроорганизмов, т.е. происходит процесс коагрегации между бактериальными видами ротовой полости.
- Стрептококки разных видов коагрегируются с актиномицетами, F.nucleatum, Veillonella, Haemophilus parainfluenzae. F.nucleatum связывается с Porphyromonas gingivalis, Haemophilus parainfluenzae и Treponema spp.

Коагрегация — пример комменсализма и синергизма, которые возникают между микробными видами. Она делает возможной непрямую адгезию некоторых бактерий на эпителиоцитах и поверхности зубов и может иметь значение в развитии зубных бляшек, потому что способствует колонизации бактерий, неспособных прилипать к пелликуле.


Другим примером коагрегаций является синтез S.mutans внеклеточных полисахаридов из сахарозы. Эти полисахариды способствуют прикреплению бактерий к зубам и благоприятствуют увеличивающейся стабильности матрикса бляшки

Взаимоотношения в микробном сообществе полости рта могут быть взаимовыгодными и антагонистическими и направлены на сохранение гомеостаза оральной флоры. На микрофлору полости рта существенное влияние оказывает наличие пищевых субстратов, витаминов, ОВП, рН среды, выделение ингибиторов, влияющих на размножение.

Нормальный состав микроорганизмов в данной экологической нише поддерживается во многом благодаря антагонистическим отношениям между микробами

Кишечная микрофлора играет важную роль и в защите организма хозяина от инфекций

❖Обеспечивает колонизационную резистентность (КР)- механизм, предотвращающий заселение экзогенных микроорганизмов и их избыточный рост; конкурирует с патогенами за сайты прикрепления к эпителию и питательные субстраты

Роль микробиоты

выведение токсинов

синтез витаминов: B1, B2, B3, B5, B6, B9, B12, K

обмен жиров

обмен жирных

кислот

регулирование иммунитета (клеточный, гуморальный)

Нормальная

обмен билирубина

стимуляция перистальтики микрофлора

обмен желчных кислот

участие в усвоении кальция

> состояние слизистой кишечника

участие в синтезе некоторых незаменимых аминокислот

водно-солевой обмен

тепловой обмен

В норме плод находится в гнотобиологических условиях, т.е. стерилен.

Первые микробы начинают появляться в организме ребёнка при прохождении родовых путей матери. С этого момента начинается, так называемая, первичная микробная колонизация организма.

Уже в первые 6-8 часов после рождения наблюдается

быстрое увеличение количества бактерий в полости рта. В этот период ротовую полость ребенка колонизируют аэробные и факультативноанаэробные виды

дифтероиды, нейссерии, сарцины, лактобактерии, стафило- и стрептококки.

Типы биоценозов

Между микроорганизмами

Нейтрализм - не оказывают друг на друга никакого действия.

Метабиоз - один вид продолжает процессы, вызванные другими микроорганизмами, используя продукты их метаболизма.

Синергизм - продукты обмена одного микроорганизма стимулируют развитие другого.

Антагонизм - продукты обмена одного микроорганизма подавляют жизнедеятельность другого.

Между микробами и высшими организмами

Комменсализм - микроорганизмы не оказывают ни вреда, ни пользы организму хозяина.

Мутуализм -микроорганизмы приносят пользу организму хозяина.

Паразитизм - микроорганизмы наносят вред организму хозяина,

Наддесневой камень

- Streptococcus
- Capnocytophaga
- Corvnebacterium
- Uncl. Pasteurellaceae
- Uncl. Neisseriaceae
- Fusobacterium

Поддесневой камень

- Streptococcus
- Fusobacterium
- Capnocytophaga
- Prevotella
- Corvnebacterium
- Uncl. Pasteurellaceae

Твёрдое нёбо

- Streptococcus
- Uncl. Pasteurellaceae
- Veillonella
- Prevotella
- Uncl. Lactobacillales
- Gemella

Спинка языка

- Streptococcus
- Veillonella
- Prevotella
- Uncl. Pasteurellaceae
- Actinomyces
- Fusobacterium
- Uncl. Lactobacillales
- Neisseria

Ороговевшая десна

- Streptococcus
- Uncl. Pasteurellaceae

Покровная слизистая

- Streptococcus
- Uncl. Pasteurellaceae
- Gemella

Глотка

- Streptococcus
- Veillonella
- Prevotella
- Uncl. Pasteurellaceae
- Actinomyces
- Fusobacterium
- Uncl. Lachnospiraceae

Нёбные миндалины

- Streptococcus
- Veillonella
- Prevotella
- Fusobacterium
- Uncl. Pasteurellaceae

Слюна

- Prevotella
- Streptococcus Veillonella
- Streptococcus

Prevotella

- Veillonella
- - Uncl. Pasteurellaceae

Ротовая жидкость

- Ротовая жидкость представляет собой важнейший биотоп полости рта, т.к. через неё осуществляется взаимодействие между всеми биотопами полости рта и регуляция микрофлоры со стороны макроорганизма.
- В ротовую жидкость постоянно поступают микробы, размножающиеся на слизистой оболочке полости рта, в десневом желобке, карманах, складках слизистой и в зубной бляшке (налёте). В ротовой жидкости они долго сохраняют жизнеспособность, а многие виды, особенно те, которые не имеют факторов адгезии к слизистой и эмали, активно размножаются.
- В ротовой жидкости в значительном количестве содержатся стрептококки (S. salivarius), нейссерии, вейлонеллы. Кроме того, встречают подвижные виды - вибрионы, спириллы и спирохеты.

Состав и свойства ротовой жидкости

- Органические компоненты протеины, углеводы, свободные аминокислоты, ферменты, витамины и др.
 Основным органическим веществом является белок
- По происхождению делятся на 2 группы:
 1)поступающие в слюну из сыворотки крови (аминокислоты, мочевина)
- 2)синтезируемые железами (амилаза, гликопротеиды, муцин, иммуноглобулины

Состав и свойства ротовой жидкости. Ферменты

- Ферменты- карбогидразы, эстеразы, протеазы, трансферазы
- По происхождению делятся на 3 группы:
- 1. Секретируемые слюнными железами
- 2. Образующиеся в результате ферментативной деятельности бактерий
- 3. Образующиеся в рез-те распада лейкоцитов в ротовой полости

Состав и свойства ротовой жидкости

- Амилаза гидролизует углеводы, превращая их в декстраны и мальтозу.
- Фосфатаза (кислая и щелочная). Щелочная участвует в фосфорно-кальциевом обмене, отсоединяя фосфат от соединений фосфорной кислоты и перенося его к костям и зубам.
- Гиалуронидаза и калликреин ферменты, изменяющие проницаемость тканей
- Протеазы (эластаза) участвуют в развитии воспалительного процесса

▶ Роль микрофлоры ротовой полости в неспецифической резистентности организма

- Полость рта, ее слизистая оболочка и лимфоидные ткани челюстно-лицевой области играют важнейшую роль во взаимодействии организма человека с окружающей средой. Микроорганизмы, обитающие в полости рта, способствуют перевариванию пищи и синтезу витаминов с одной стороны, а с другой стороны образуют продукты, повреждающие ткани зубов.
- В полости рта содержится более 700 видов микроорганизмов
- ▶ 1 мл слюны содержит до 10⁹ микроорганизмов
- Микробы полости рта антагонисты патогенной флоры, и в то же время могут вызывать развитие серьёзных заболеваний
- Спектр микрофлоры может варьировать в связи с гигиеническими привычками, состоянием зубов, возрастом

Роль нормальной микрофлоры полости рта:

- 1. оказывает антагонистическое действие в отношении различных патогенных видов бактерий, попадающих в полость рта.
- 2. стимулирует развитие лимфоидной ткани
- 3. поддерживает физиологическое воспаление в слизистой оболочке и повышают готовность к иммунным реакциям
- 4. обеспечивает самоочищение ротовой полости
- 5. способствует снабжению организма аминокислотами и витаминами, которые секретируются м/о в процессе метаболизма
- 6. продукты жизнедеятельности микроорганизмов могут стимулировать секрецию слюнных и слизистых желез
- 7. являются возбудителями и главными виновниками основных стоматологических заболеваний.

Возрастные особенности микрофлоры толстого кишечника

- ▶ ЖКТ новорожденных стерилен, но уже через сутки заселяется микроорганизмами, попадающими в организм через питание
- Микрофлора детей, находящихся на грудном вскармливании представлена в основном молочнокислыми стрептококками и лактобактериями.
- У детей, находящихся на *искусственном вскармливании* состав микрофлоры кишечника более разнообразен, но количество лактобактерий бывает значительно низким
- У здоровых детей к концу первого года жизни нормальная микрофлора сходна с микрофлорой взрослого человека

Нормальная микрофлора мочепо<mark>лового</mark> тракта

Анатомическая область	Микроорганизм	Морфологические свойства	
Мочеиспускательный канал (нижняя треть)	p.Micrococcus Staphylococcus epidermidis p.Streptococcus Mycobacterium smegmatis p.Corynebacterium (дифтероиды) p.Bacteroides p.Neisseria Сем-во Enterobacteriaceae	Грам(+)кокки Грам(+) гроздьевидные кокки Грам(+) кокки в виде цепочек Грам(+) кислотоустойчивые палочки Грам(+)плеоморфные палочки Грам(-) плеоморфные палочки Грам(-) диплококки Грам(-) палочки	
почки, мочевыводящие пути, мочевой пузырь, верхние отделы мочеиспускательного канала	Микроорганизмы не встречаются		
Влагалище	p.Lactobacillus p.Corynebacterium (дифтероиды) p.Streptococcus p.Staphylococcus Сем-во Enterobacteriaceae p.Candida Trichomonas vaginalis	Грам(+) палочки Грам(+) плеоморфные палочки Грам(+) кокки в виде цепочек Грам(+) гроздьевидные кокки Грам(-) палочки Дрожжеподобные грибы Protozoa	
матка, маточные трубы яичники ³⁷	Микроорганизмы не встречаются		

Дисбиоз и дисбактериоз

- Облигатные и факультативные представители нормофлоры организма образуют своеобразное микробное сообщество (эубиоз).
- Существующий между ними баланс обусловлен прежде всего антагонистическим действием облигатной микрофлоры на факультативную
- В результате нарушения равновесия между облигатной и факультативной микрофлорой, происходящего под действием различных факторов развиваются состояния дисбиоза и дисбактериоза

Механизм развития дисбиоза и дисбактериоза

- Развитие дисбактериозов связано с *количественными* и *качественными изменениями бактерий*, входящих в состав нормофлоры организма человека.
- ▶ В результате происходит увеличение количества условнопатогенных микроорганизмов, входящих в состав факультативной микрофлоры -стафилококков, протеев, сине-гнойной палочки, грибов рода Candida
- ▶ При дисбиозах изменения происходят среди других групп микроорганизмов (вирусов, грибов и др.)
- Дисбиозы классифицируют :
- по этиологии грибковый, стафилококковый, протейный
- по локализации дисбиоз рта, кишки, влагалища и т.д.

Факторы, способствующие развитию дисбиозов и дисбактериозов

- Длительное и нерациональное использование антимикробных препаратов является одной из первопричин развития дисбиозов.
- А также химио- или гормонотерапия, заболевания желудочно-кишечного тракта (бактериальные и паразитарные инфекции, гельминтозы), стрессовые ситуации и др. играют определенную роль в их развитии.
- Современное состояние окружающей среды, экологические проблемы широко способствуют развитию дисбактериозов

Лечение дисбиоза и дисбактериоза

- Прежде всего осуществляют выявление и устранение факторов, которые способствуют их развитию
- Селективная деконтаминация избирательное удаление аэробных бактерий и грибов (н-р, комплексное назначение ванкомицина, гентамицина и нистатина)
- Совместно с селективной деконтаминацией, для восстановления нормальной микрофлоры назначают пробиотики (эубиотики)
- Эубиотики содержат живые бактерии, представители нормальной облигатной микрофлоры кишечника бифидобактерии, кишечные палочки, лактобактерии и пр.

Значение нормальной микрофлоры

- Микрофлора участвует в колонизационной резистентности, которая является совокупностью защитных свойств организма и конкурентных свойств нормальной микрофлоры кишечника, придающих стабильность микрофлоре и предотвращающих колонизацию организма посторонними микробами. Данное состояние поддерживается благодаря антагонистической активности нормальной микрофлоры в отношении патогенных и условно-патогенных микроорганизмов.
- Участвует *в разрушении канцерогенных веществ* в кишечнике (антимутагенная функция).
 - Участвует *в переваривании и детоксикации* экзогенных и эндогенных субстратов и метаболитов
 - Нормальная микрофлора— важный фактор *врожденного иммунитета*. Антигены микрофлоры *неспецифически* стимулируют иммунную систему
- Нормальная микрофлора участвует в водно-солевом обмене, обмене белков, углеводов, жирных кислот, в продукции биологически активных соединечий (антибиотиков, витаминов (К и группы В)

Факторы внешней среды

Физические, химические и биологические факторы внешней среды оказывают на микробы бактерицидное, бактеристатическое и мутагенное воздействие

Физические факторы

- **Температура**
- **Высушивание**
- **С**вет (УФ-лучи)
- Ионизирующее излучение
- Ультразвук

Температурный режим роста от<mark>дельных групп бактерий</mark>

TABLE 8-1	Categories of Bacteria on the Basis of Growth Temperature			
CATEGORY	MINIMUM GROWTH TEMPERATURE	OPTIMUM GROWTH TEMPERATURE	MAXIMUM GROWTH TEMPERATURE	
Thermophiles	25°C	50°-60°C	113°C	
Mesophiles	10°C	20°-40°C	45°C	
Psychrophiles	−5°C	10°-20°€	30°C	

Высушивание.

Для нормальной жизнедеятельности микроорганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы, нарушается целостность цитоплазматической мембраны, что ведет к гибели клетки.

Некоторые микроорганизмы под влиянием высушивания погибают уже через несколько минут: это многие виды кокков.

Действие излучения

- В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Прямые солнечные лучи вызывают гибель многих микроорганизмов в течение нескольких часов, за исключением фотосинтезирующих бактерий.
- Губительное действие солнечного света обусловлено активностью ультрафиолетовых лучей (УФ-лучи). Они инактивируют ферменты клетки и повреждают ДНК. Патогенные бактерии более чувствительны к действию УФ-лучей, чем сапрофиты. Поэтому хранить микробные культуры в лаборатории лучше в темноте.

Действие излучений и ультразвука на микроорганизмы

Ионизирующее излучение повреждает геном клетки, вызывая различные дефекты от точечных мутаций до ее гибели

Ультрафиолетовое излучение повреждает ДНК клетки и вызывает мутации или их гибель

Ультразвуковое воздействие вызывает деполимеризацию органелл клетки, а также денатурацию молекул веществ, входящих в ее состав за счет высокой температуры и давления

Химические вещества

- Могут оказывать различное действие на микроорганизмы:
- **служить источниками питания**;
- не оказывать какого-либо влияния;
- **тимулировать или подавлять рост, вызывать гибель.**

Антимикробные химические вещества используются в качестве антисептических и дезинфицирующих средств, так как обладают бактерицидным, вирулицидным, фунгицидным действием и т.д. Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены хлор-, йод- и бромсодержащие соединения и окислители

Уничтожение микробов в окружающей среде

- Тепловая стерилизация основана на чувствительности микробов к высокой температуре. При 60°С вегетативные формы микробов погибают, а споры, содержащие воду в связанном состоянии и обладающие плотными оболочками, инактивируются при 160−170°С. Для тепловой стерилизации применяют в основном сухой жар и пар под давлением
- Стерилизацию сухим жаром производят в воздушных стерилизаторах (сухожаровых шкафах, или печах Пастера) при 180°С. Сухим жаром стерилизуют лабораторную посуду, инструменты, силиконовую резину и другие объекты, которые не теряют своих качеств при высокой температуре.
- Стерилизацию паром проводят в паровых стерилизаторах (автоклавах) под давлением. Повышенное атмосферное давление приводит к увеличению температуры кипения. Под действием высокой температуры и пара споры погибают уже при 121°C в течение 15–20 мин. В паровом стерилизаторе стерилизуют перевязочный материал, металлические инструменты, питательные среды, растворы, инфекционный материал, белье и т.д.
 - Дробная стерилизация (тиндализация) проводится нагреванием объектов при 70–80°С в течение 30–60 мин для уничтожения вегетативных форм микробов. Процедуру повторяют три дня подряд, причем после каждого прогревания объект выдерживают в термостате для прорастания спор. Метод применяют для обработки материалов, не выдерживающих температуру выше 100°С, например питательных сред с углеводами

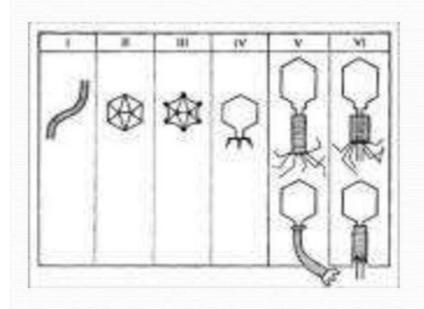
- Химическая стерилизация основана на использовании токсичных газов: оксида этилена, смеси ОБ (смеси оксида этилена и бромистого метила) и формальдегида. Эти алкилирующие агенты, инактивируют активные группы в ферментах, др. белках, нуклеиновые кислоты, что приводит к гибели микроорганизмов. Стерилизация осуществляется паром при температуре от 20 до 60°С в специальных камерах. Химическую стерилизацию используют для объектов, которые могут быть повреждены нагреванием (например, оптические приборы, электронная аппаратура, предметы из нетермостойких полимеров, питательные среды с белком и т.п.).
- **Лучевая стерилизация** позволяет обрабатывать сразу большое количество предметов (например, одноразовых шприцев, инструментов, систем для переливания крови и т.д.). Она основана на использовании γ-излучения или ускоренных электронов. Гибель микробов происходит в результате повреждения нуклеиновых кислот.
- Стерилизация фильтрованием осуществляется с помощью различных фильтров (нитроцеллюлозных, керамических, асбестовых, стеклянных). Она позволяет освободить жидкости (питательные среды, сыворотку крови, лекарства) от микробов. Лучшими из всех известных типов являются мембранные фильтры

Дезинфекция (обеззараживание) это уничтожение патогенных микроорганизмов в различных объектах окружающей среды.

- **Тепловая дезинфекция.** Эффективно действие горячей воды и насыщенного пара. Примером тепловой дезинфекции в быту служит применение автоматических моечных машин, обычная стирка белья, приготовление пищи и кипячение питьевой воды. Температура 100 °C убивает вегетативные формы бактерий и вирусы в течение 5 мин. Уничтожению спор способствует добавление в воду 2% натрия гидрокарбоната (NaHCO3). Для дезинфекции применяют также сухое тепло, например **прокаливание**.
- Пастеризация метод, созданный Л. Пастером и используемый для обработки в основном молока, а также соков, вина и пива
- **Ультрафиолетовое облучение** осуществляется с помощью специальных бактерицидных ламп. УФ-лучи разрушают ДНК микробов.
- **Химическая дезинфекция** проводится с помощью различных дезинфицирующих веществ, которые растворяют липиды мембран (детергенты) или разрушают белки и нуклеиновые кислоты (денатураты, оксиданты) микробов. Химической дезинфекции подвергаются поверхность операционного стола, стены процедурного кабинета, кожа, отработанный патологический материал, вода (хлорирование воды), некоторые инструменты, которые невозможно обработать теплом.

Влияние химических факторов на микроорганизмы

- **Х**имические вещества, используемые для уничтожения микроорганизмов называются *дезинфицирующими*.
- Вещества, характеризующиеся выраженным антимикробным эффектом, но не обладающие токсичностью для макроорганизма, называются антисентическими средствами и применяются для гибели или подавления роста микробов, контактирующих с поверхностью кожи, слизистых оболочек и ран.
- **Антисептика** (греч. *anti*-против, *septikos*-гнойный) комплекс мер, направленных на уничтожение микроорганизмов в ране, целом организме или на объектах внешней среды, с применением различных обеззараживающих химических веществ.
- Антисептика включает комплекс мероприятий, направленных на уничтожение микробов в патологическом очаге, ране или другом объекте.
- **Асептика** комплекс профилактических мероприятий, препятствующих микробному загрязнению различных объектов (раны, операционного поля, кожи и слизистых и т. д.).


Основные группы химических антисептиков:

- 1. спирты (40% 70% 96%)
- 2. галоиды (йод, йодинол, йодонат и йодопирон, раствор люголя);
- **3. тяжелые металлы** (оксицианид ртути, серебро азотнокислое, протаргол, колларгол, оксид цинка, сульфат меди);
- 4. альдегиды (формалин, лизол);
- 5. фенолы (карболовая кислота, тройной раствор);
- 6. красители (бриллиантовый зеленый, метиловый синий);
- 7. кислоты (борная кислота, салициловая кислота);
- 8. щелочи (нашатырный спирт);
- 9. окислители (р-р перекиси водорода, перманганат калия);
- 10. детергенты (хлоргексидина биглюконат, церигель, дегмин, дегмицид);

Фаги широко распространены в природе, способны паразитировать в клетках бактерий и других микроорганизмов, способствуя их гибели (лизису). Размеры фагов колеблются от 20 до 800 нм. Их подразделяют на несколько морфологических типов: нитевидные, кубические, сперматозоидной формы

Морфологические типы фагов.

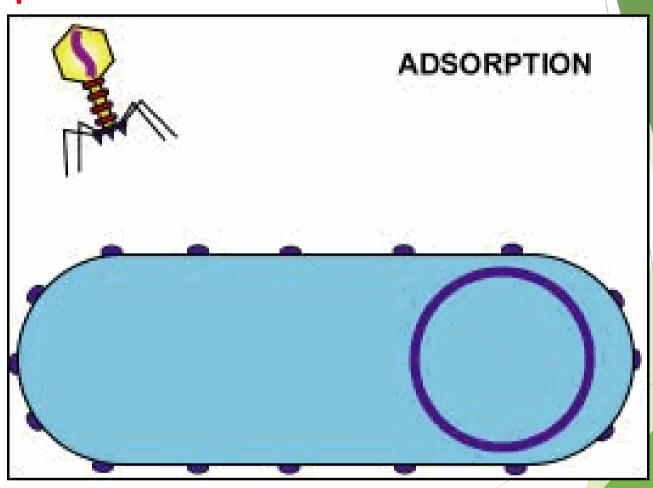
I — нитевидные фаги
II — фаги без отростка
III- фаги с аналогом отростка
IV — фаги с коротким отростком
V — фаги с длинным
несокращающимся отростком
VI— фаги с длинным
сокращающимся отростком

Характер взаимодействия с бактериальной клеткой

- В зависимости от типа взаимодействия с бактериальной клеткой различают вирулентные и умеренные бактериофаги
- В результате взаимодействия вирулентных фагов с бактериальной клеткой происходит лизис бактерий
- Данный процесс характеризуется просветлением бульонной культуры, т.е. образованием фаголизата. В культурах, растущих на плотной питательной среде участки лизиса бактерий проявляются в виде негативных колоний фага.

Взаимодействие фагов с бактериальной клеткой

вирулентных

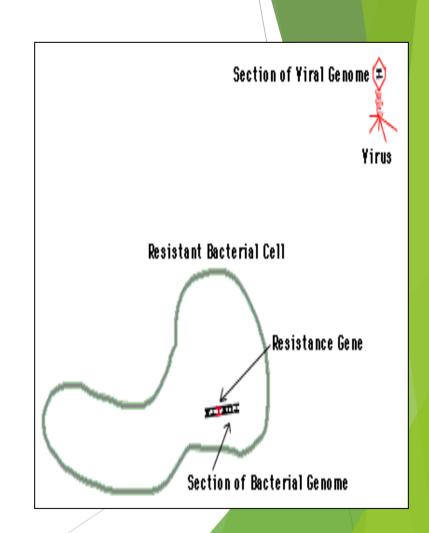

- Адсорбция фагов на бактериальной клетке
- Проникновение нуклеиновой кислоты фага внутрь бактериальной клетки
- Репликация нуклеиновой кислоты и синтез белков фага
- Формирование фаговой частицы
- Выход фага из бактериальной клетки

умеренных

- Адсорбция фагов на бактериальной клетке
- ДНК фага встраивается в хромосому бактерии и существует вместе с ней - развивается интегративная инфекция.
- ▶ Образование профага
- Формирование лизогении
- Гибель клетки при этом не происходит.

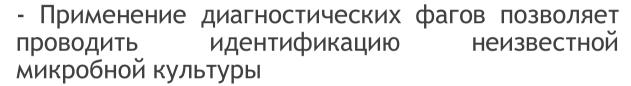
Превращение умеренного фага в вирулентный возможно под действием различных факторов, н-р, ионизирующего излучения, УФ-лучей и т.д.

Взаимодействие фагов с бактериальной клеткой

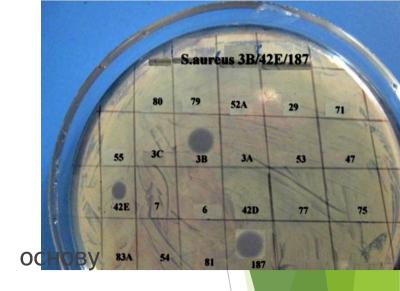


Дефектные фаги

Дефектные фаги образуются в результате фрагментации бактериальной ДНК после фаговой инфекции и встраивания кусочка бактериальной ДНК в ДНК фага. Дефектные фаги, несущие в геноме частичку бактериальной ДНК могут придавать бактерии новые (морфологические, культуральные, биохимические, токсигенные и др.) свойства.

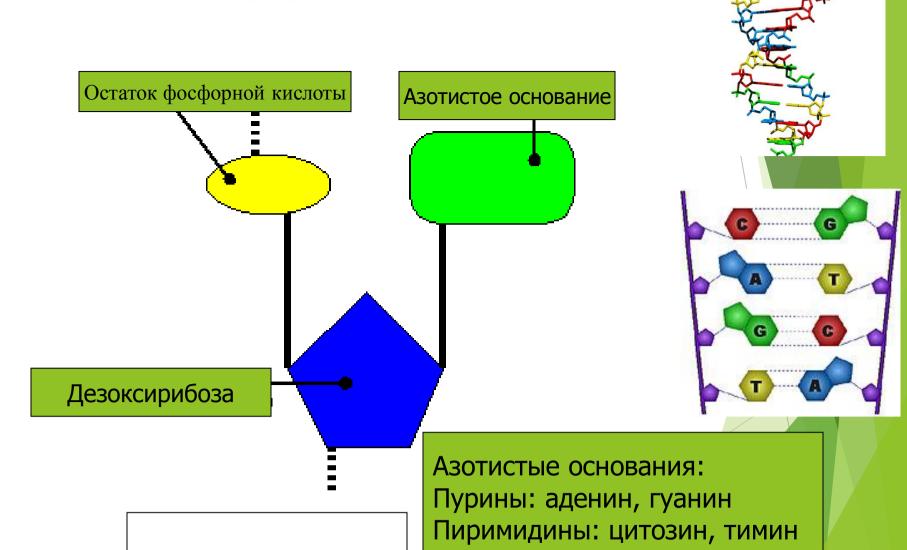

Этот феномен изменения свойств под влиянием профага называется фаговой или лизогенной конверсией.

Н-р, токсигенность возбудителя дифтерии обусловлена наличием гена *tox*, источником которого является лизогенный бактериофаг в интегрированном в хромому состоянии. Дефектные бактериофаги используют в качестве вектора в генной инженерии


Практическое применение фагов

- Фаготипирование (*фаготипаж*) применяется для выявления источника заболевания

Фагопрофилактика и фаготерапия основывается способности фагов уничтожать чувствительные к ним бактерии в организме больного. С этой целью фаги выпускают в виде лекарственных препаратов


Генетика микроорганизмов

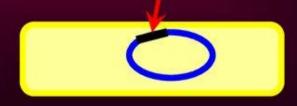
Генетика микроорганизмов, раздел общей генетики, в котором объектом исследования служат бактерии, микроскопические грибы, вирусы животных и растений, бактериофаги и др. микроорганизмы.

Организация генетического аппарата у бактерий

- Генетическая информация бактерий хранится как в ДНК, (хромосоме) так и во внехромосомных структурах плазмидах, и в мигрирующих генетических элементах.
- ДНК –материальная основа наследственности. Все признаки организма хранятся в виде последовательности нуклеотидов молекулы ДНК.
- Исключением могут служить РНК-содержащие вирусы, у которых генетическая информация заключена в молекуле РНК.
- Хромосома бактерий представлена двойной спиральной, кольцевой, ковалентно замкнутой суперспирализованной молекулой ДНК, построенной из двух полинуклеотидных цепочек.

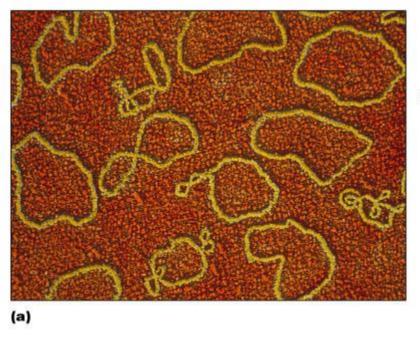
Строение молекулы ДНК

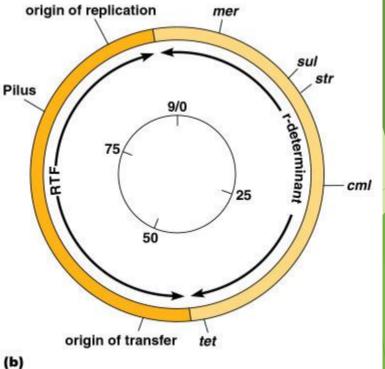
ПЛАЗМИДЫ - ВНЕХРОМОСОМНЫЕ ГЕНЕТИЧЕСКИЕ СТРУКТУРЫ БАКТЕРИЙ.


НЕБОЛЬШИЕ МОЛЕКУЛЫ ДНК,
СПОСОБНЫЕ К АВТОНОМНОЙ РЕПЛИКАЦИИ.

ПЛАЗМИДЫ ЛОКАЛИЗУЮТСЯ В ЦИТОПЛАЗМЕ БАКТЕРИИ

В СВОБОДНОМ ВИДЕ – ПЛАЗМИДА



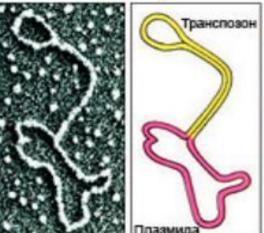

В СВЯЗАННОМ С НУКЛЕОИДОМ ВИДЕ – ЭПИСОМА

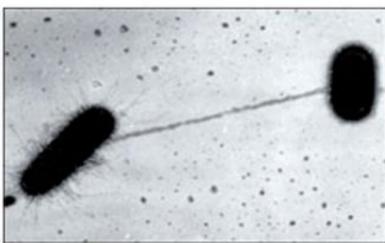
Плазмиды

- Внехромосомные молекулы ДНК
- Реплицируются самостоятельно
- Передаются от одной клетки к другой
- Форма кольцевая или линейная
- С помощью коньюгативных плазмид осуществляется передача участков ДНК от клетки к клетке.

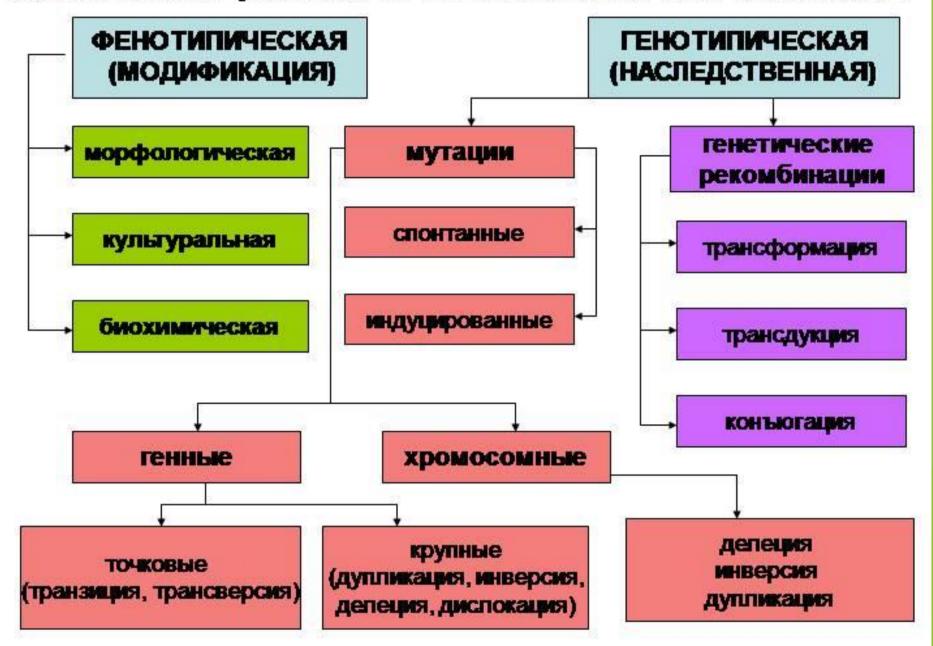
Виды плазмид

- ▶ Интегративные плазмиды—эписомы
- **Трансмиссивные** (коньюгативные) плазмиды
- Примеры плазмид:
- **F** плазмиды- участвуют коньюгации
- » R -плазмиды гены устойчивости
- ▶ Col -плазмиды обеспечивают синтез колицинов E. coli и бактериоцинов у других бактерий
- > Ent- плазмиды определяют синтез энтеротоксинов
- ▶ Hly плазмиды детерминируют синтез гемолизинов


Подвижные генетические элементы


- ► IS элементы (IS insertion sequence, т.е. вставочные последовательности). Это сегменты ДНК, способные перемещаться из одного участка репликона в другой, а также между репликонами. IS-элементы содержат только те гены, которые необходимы для их перемещения.
- Транспозоны это участки ДНК, способные перемещаться, но в отличие от IS—элементов они имеют структурные гены. Транспозоны не способны к самостоятельной репликации.

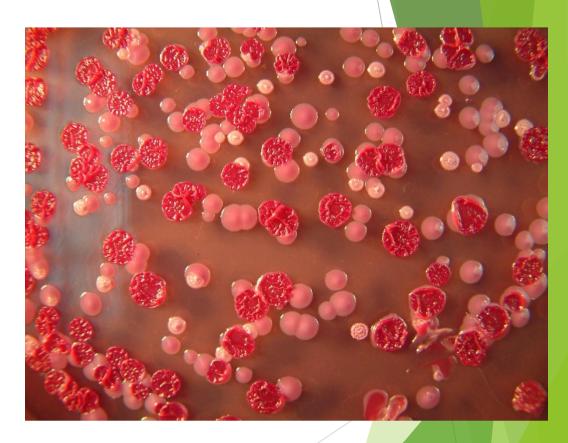
Подвижные генетические элементы


вызывают

- Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются («выключение» генов)
- Образование повреждений генетического материала (мутации)
- Слияние репликонов, т.е. встраивание плазмиды в хромосому

КЛАССИФИКАЦИЯ ИЗМЕНЧИВОСТИ МИКРООРГАНИЗМОВ

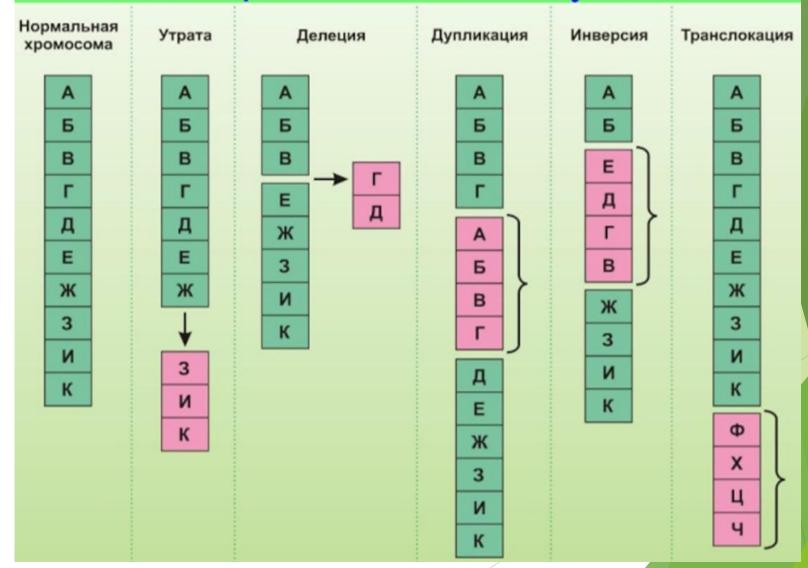
Фенотипическая изменчивость


- Жгутики: при утрате жгутиков бактерии теряют подвижность
- Капсула: при неблагоприятных условиях, а также при культивировании на простых питательных средах, бактерии утрачивают капсулу. Капсулообразование восстанавливается в организме, и при культивировании на обогащенных питательных средах.
- <u>Споры: при неблагоприятных условиях некоторые</u> вегетативные формы бактерий способны образовывать споры
- Клеточная стенка: бактерии, утратившие клеточную стенку, превращаются в протопласты, сферопласты и L формы.
- Потеря вирулентности в неблагоприятных условиях.

Диссоциация

- Суть диссоциативной изменчивости заключается в том, что некоторые бактерии при культивировании на питательных средах образуют колонии разных типов.
- Гладкие, блестящие колонии обозначают как S-колонии (от англ. smooth- гладкий), шероховатые колонии (от англ. rough шероховатый) называют R-колониями.
- ▶ В результате диссоциации иногда возникают промежуточные формы - слизистые *М-колонии* (от англ. *mucoid*- слизистые), очень маленькие *D-колонии* (от англ. *dwarf* - очень маленькие, карликовые).

R - S диссоциация

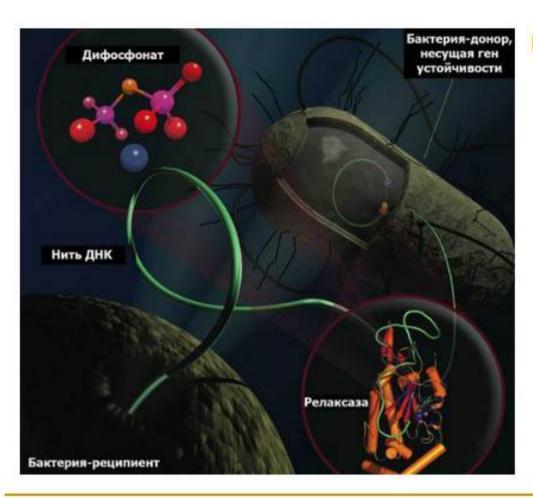

- Диссоциация обычно протекает в направлении от S к R через образование промежуточных форм. Обратный переход наблюдают значительно реже.
- Большинство бактерий, патогенных для человека, образуют S-колонии, за исключением Mycobacterium tuberculosis, Yersinia pestis, Bacillus anthracis и др.

Виды мутаций

- **Спонтанные и индуцированные мутации** (под действием мутагенов);
- **Точечные (генные) и хромосомные мутации** (делеция, дупликация, транслокация, инверсия);
- Прямые и обратные (реверсия) мутации;
- Обратимые и необратимые мутации;
- Миссенс и нонсенс мутации

Виды хромосомных мутаций

По протяженности:


Генные (точечные) - утрачивается или изменяется один ген

Хромосомные (крупные) – утрачиваются или изменяются несколько генов

По влиянию на жизнеспособность бактерий:

Летальные - полная утрата способности синтезировать жизненно важные ферменты **Нейтральные** - утраченное свойство не препятствует размножению микробов **Условно-летальные**- изменение, но не утрата функции клетки

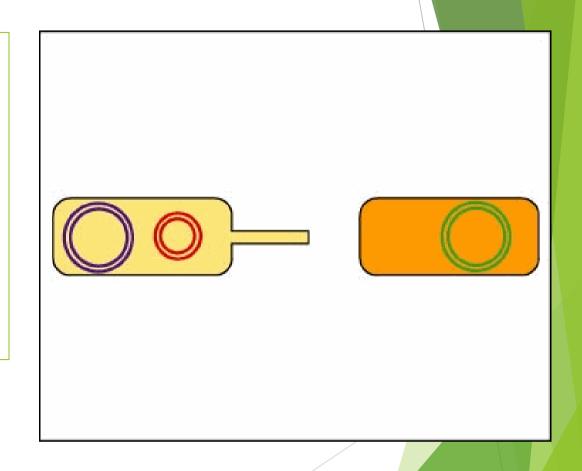
РЕКОМБИНАЦИИ

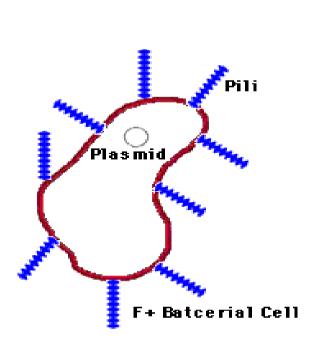
 Форма обмена генетическим материалом между двумя отдельными бактериями

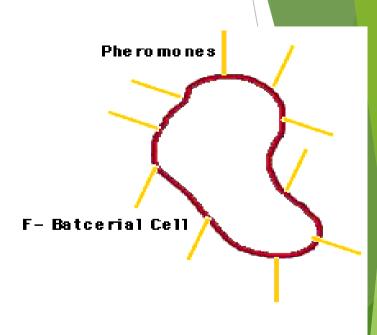
Генетические рекомбинации

Трансформация — передача генетического материала реципиенту при помощи изолированной ДНК другой клетки.

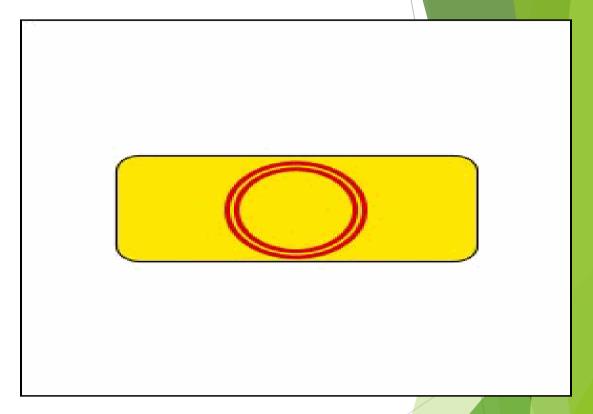
Трансдукция — это перенос наследственного материала от бактерии-донора к бактерии-реципиенту бактериофагом.


Конъюгация — передача генетического материала от одной клетки другой путем непосредственного контакта.

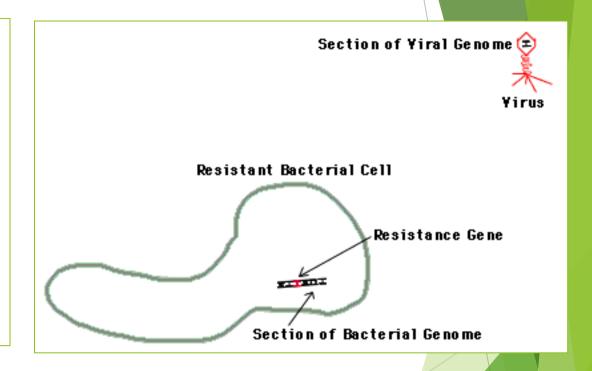

Конъюгация


Конъюгация –

передача генетического материала от клетки-донора в клетку реципиент путем непосредственного контакта клеток.


Коньюгация

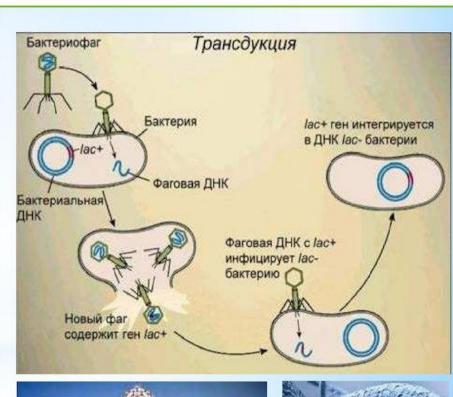
Трансформация


Трансформацияэто
непосредственная
передача
генетического
материала
(высокополимеризован
-ной ДНК) донора в
клетку-реципиент.

Трансдукция

Трансдукция

передача
 бактериальной
 ДНК от донора
 к реципиенту
 посредством
 бактериофага

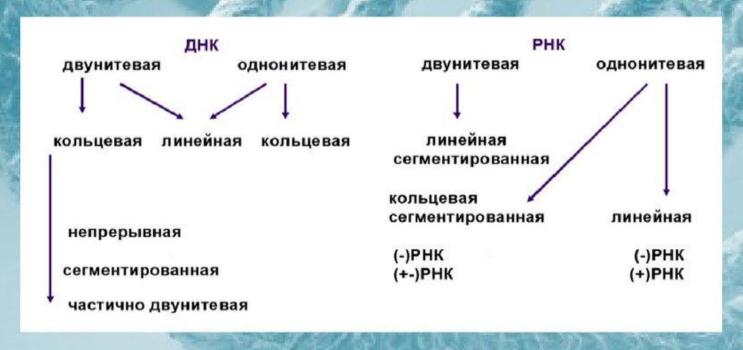

Генетика микроорганизмов

Трансдукция

Трансдукция - это перенос генетического материала от одной бактериальной клетки к другой посредством умеренного бактериофага (переносятся гены, контролирующие питательные особенности бактерий, их устойчивость к лекарственным веществам, ферментативную активность, наличие жгутиков и др., обнаружен у представителей родов Bacillus, Pseudomonas, Salmonella, Escherichia и др.).

Известны три главных типа трансдукции:

- 1. Общая (неспецифическая) передаются различные фрагменты ДНК;
- 2. Локализованная (специфическая) передаются определенные гены (ДНК трансдуцирующего фага соединяется co строго определенными бактериальными генами, расположенными на хромосоме клетки-донора. Считают, что каждая фага частица переносит или только один бактериальный близко ген, или несколько расположенных генов);
- 3. Абортивная принесенный фагом фрагмент хромосомы клетки-донора не включается в хромосому клетки-реципиента, а располагается в ее цитоплазме автономно и в таком виде функционирует (при делении клетки-реципиента трансдуцированный фрагмент ДНК-донора может передаваться только одной из двух дочерних клеток, т.е. наследуется однолинейно, в связи с чем утрачивается в потомстве).



Генетика вирусов

Особенности организации наследственного аппарата вирусов.

Генетическое разнообразие вирусов.

Виды изменчивости вирусов

- Мутации изменение нуклеотидных последовательностей в нуклеиновой кислоте вируса
- **Изменчивость,** происходящая в результате одновременного поражения клетки двумя вирусами:
 - генетическая рекомбинация
 - генетическая реактивация
 - комплементация
 - фенотипическое смешивание

Генетика вирусов

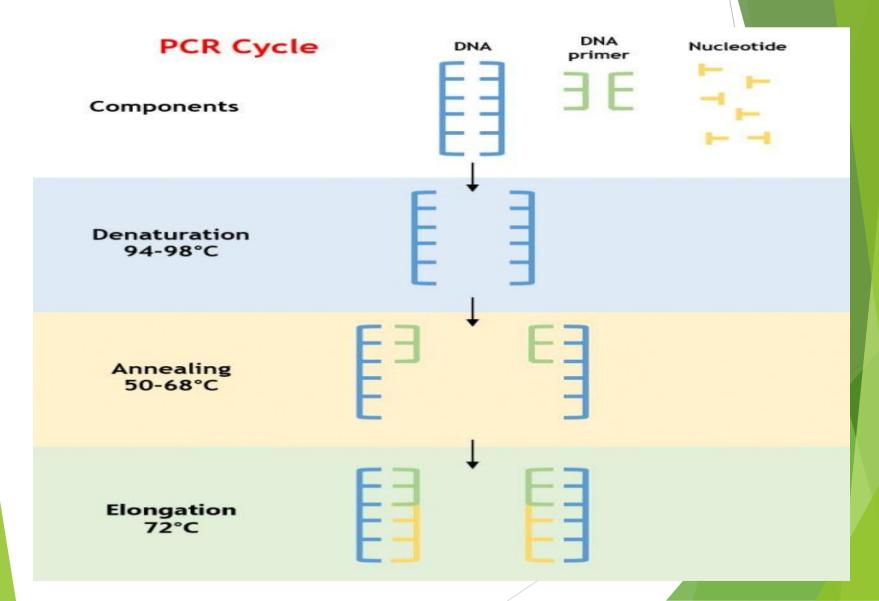
Комплементация функциональное взаимодействие двух дефектных вирусов, приводящее к появлению возможности их репродукции в условиях, при которых невозможно размножение каждого в отдельности

Обмен фрагментами генома (наблюдается у РНК- содержащих вирусов с сегментированным геномом). Результатом обмена геномов является антигенный шифт у вируса гриппа

Рекомбинация — обмен между гомологичными участками, приводит к перераспределению генетического материала в дочерних популяциях

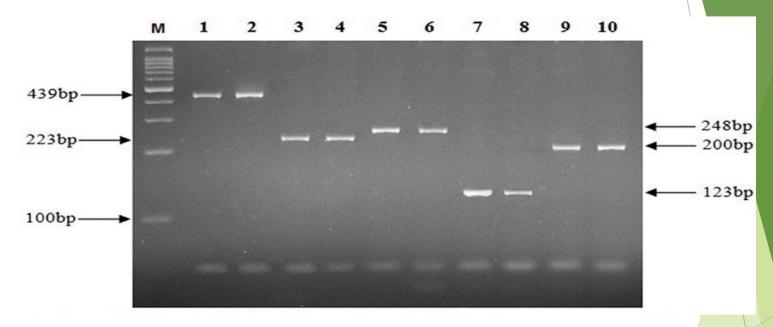
Применение генетических методов в диагностике инфекционных болезней

- Полимеразная цепная реакция
- ▶ Метод молекулярной гибридизации
- Рестрикционный анализ
- Секвенирование


Полимеразная цепная реакция (ПЦР)

- ПЦР позволяет обнаружить ДНК или РНК микробов в исследуемом накопления. Метод ПЦР облалает материале путем их чувствительностью, позволяющей определить наличие в изучаемой пробе ЛНК РНК. ППР проводят молекулы или спешиальных программированных аппаратах.
- ▶ Выделенную из исследуемого материала ДНК нагревают при 92-96 °C (в случае применения термостабильной *Tag*-полимеразы прогревают до 98°C). Тепловая денатурация приводит к разведению двух цепей двойной спирали. С целью полной денатурации компонентов прогревание проводят в течение 2-5 минут.
- ▶ Затем добавляют праймеры и полимеразу, и при наличии в смеси ДНК искомого гена, праймеры связываются с его комплементарными участками. В результате синтезируются две копии гена, после чего цикл повторяется снова, при этом количество ДНК гена будет увеличиваться каждый раз вдвое (амплификация)
 - Специфический продукт ПЦР идентифицируется электрофорезом

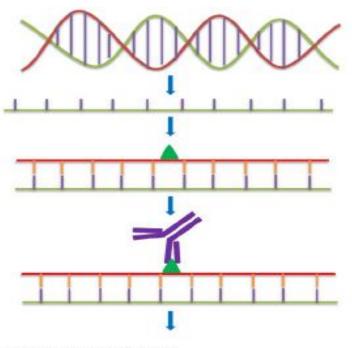
ПЦР в реальном времени


- ► ПЦР в реальном времени (real time PCR) ускоренный метод, при котором амплификация и определение продукта амплификации проводятся одновременно.
- Позволяет проводить мониторинг и количественный анализ накопленных продуктов ПЦР, и регистрировать и интерпретировать полученный результат в автоматическом режиме.
- ▶ Метод позволяет обнаружить даже одну молекулу ДНК или РНК
- Полученную информацию можно использовать для контроля эффективности лечения

Принцип амплификации

Электрофоретическая идентификация ДНК

(электрофорез в 2%- агарозном геле)

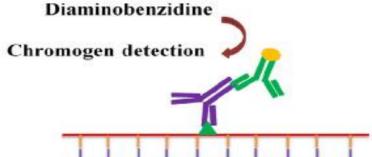


M, Molecular size marker; Lanes 1, 2, 439 bp fragment of *hsp65* gene; Lanes 3, 4, 223 bp fragment of *mtp40* gene; Lanes 5, 6, 248 bp fragment of *IS1081* gene; Lanes 7, 8, 123 bp fragment of *IS6110* gene; Lanes 9, 10, 200 bp fragment of *mpb64* gene

Метод молекулярной гибридизации

- Позволяет обнаружить нуклеиновые кислоты в исследуемом материале при помощи зондов, меченных радиоактивными изотопами или ферментами
- В качестве зонда используют одноцепочечную молекулу нуклеиновой кислоты, меченную радиоактивными нуклидами с которой сравнивают исследуемую ДНК
- В случае наличия комплементарности между зондом и исследуемой ДНК они образуют между собой двойную спираль (гибридизация)
- Локализацию молекулярных гибридов определяют иммуноферментным или радиоиммунным методом.

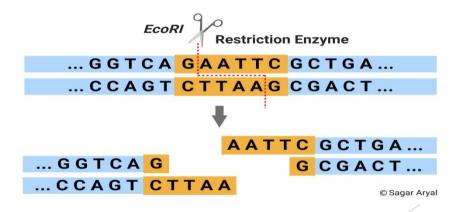
Схема гибридизации ДНК



Target DNA sequence

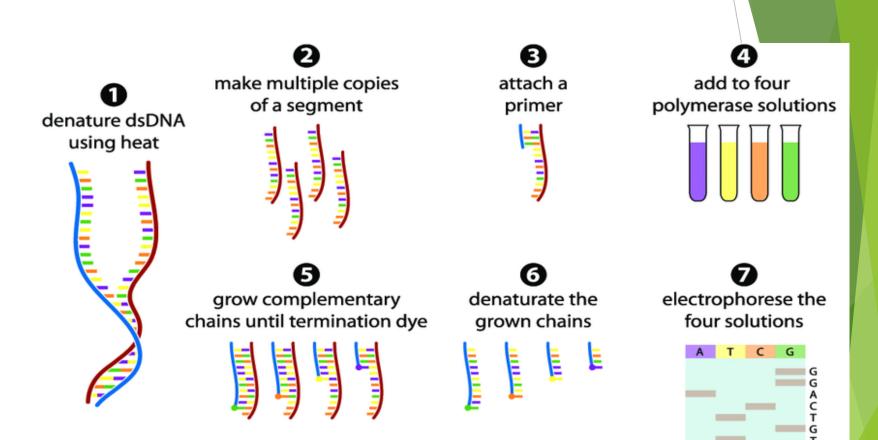
ssDNA sequence

Digoxinenin labeled complementary probe added


Primary antibody added

Secondary antibody conjugated with HRPO added

Рестрикционный анализ


- **Рестрикционный анализ** в основном используется при идентификации микроорганизмов.
- Принцип метода заключается в идентификации расщепленных рестриктазами фрагментов ДНК с помощью электрофореза.
- *Рестриктазы* это эндонуклеазы расщепляющие молекулы ДНК путем разрыва фосфатных связей в определенных последовательностях нуклеотидов.
- Размер рестрикционных фрагментов можно узнать с помощью электрофореза в агарозном геле, окрашенном бромистым этидием. Мелкие и крупные фрагменты ДНК перемещаются в геле с разной скоростью, что таким образом можно получить рестрикционную карту определённого вида микробов

Секвенирование

- ✓ Секвени́рование позволяет определить нуклеотидную последовательность ДНК (от англ, sequence последовательность).
- ✓ Наиболее распространенным является *метод* Сэнгера. Вначале исследования молекулу исследуемой ДНК расщепляют щелочным гидролизом на цепочки различной длины.
- ✓ К полученной смеси присоединяют меченые дидезоксинуклеотиды
- (аденин, тимин, гуанин и цитозин), которые присоединяются к комплементарным нуклеотидам на 3^I-конце фрагмента ДНК. Таким образом, образуется набор фрагментов ДНК разной длины, которые заканчиваются соответственным дидезоксинуклеотидом.
- ✓ Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле (с точностью до одного нуклеотида), проводят радиоавтографию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК
- ✓ Проводят сравнение полученных результатов секвенирования с помощью специальных программ с результатами, имеющимися в базе данных

Секвенирование методом Сэнгера

Антимикробные препараты

- Не обладающие избирательностью действия
 - *дезинфектанты и антисептики*, вызывающие гибель большинства микробов, но при этом токсичные для организма;

 Обладающие избирательностью действия химиотерапевтические вещества.

Химиотерапия

Химиотерапия — это лечение лиц с инфекционными болезнями с помощью химических веществ, действующих избирательно на возбудителя в организме человека, не оказывая вредного влияния на клетки и органы больного.

Формирование химиотерапии

- ▶ 1885 г П.Эрлих сформулировал основную идею химиотерапии – избирательность действия химических веществ.
- ▶ 1886 г синтез П.Эрлихом и в Институте Пастера антитрипаносомных препаратов (трипановый красный и трипановый синий)
 - 1887-1888 гг − П.Эрлихом сформулированы основные требования к химиотерапевтическим препаратам и введено понятие о химиотерапевтическом индексе

Основные требования к химиотерапевтическим препаратам

- Специфичность действия
- Максимальная терапевтическая активность
- Минимальная токсичность для организма
 Химиотерапевтический индекс -

Минимальная терапевтическая доза Максимально переносимая доза Индекс не должен быть больше 1

Развитие химиотерапии

- ► 1909-1910гг синтез П.Эрлихом антиспирохетных препаратов (сальварсан и неосарварсан)
- ▶ 1920-1930 гг синтез в Германии и франции противомалярийных препаратов (плазмохин)
- ▶ 1932 г синтез в Германии Г.Домагком антибактериального препарата сульфамид хризоидина (сульфаниламид)

Спектр действия химиотерапевтических

препаратовПо спектру действия различают:

- 1. Действующие на клеточные формы (антибактериальные, антигрибковые, антипротозойные)
 - антибактериальные могут быть широкого и узкого спектра действия
- 2. Действующие на неклеточные формы (антивирусные)
- 3. Подавляющие рост опухолей (противоопухолевые)

Тип действия антимикробных химиопрепаратов

Микробицидные (бактерицидные, фунгицидные и т.д.) химиопрепараты - вызвающие гибель микробов за счет необратимых повреждений;

 Микробостатические химиопрепараты подавляющие рост и размножение микробов

Антимикробные химиопрепараты

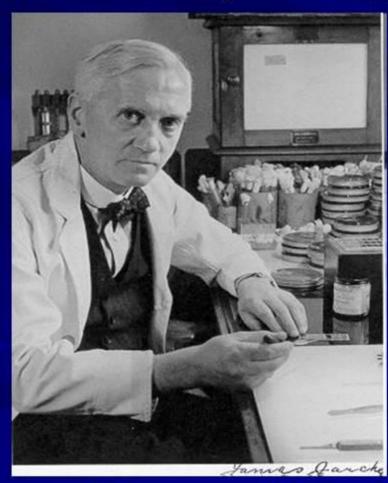
• **Антибиотики** (действуют на клеточные формы микробов и опухоли);

Синтетические химиопрепараты (действуют на клеточные и неклеточные формы микробов, а также на опухоли)

Антибиотики

▶ Антибиотики – это химиотерапевтические препараты из химических соединений биологического происхождения (а также их полусинтетические производные и синтетические аналоги), оказывающие микробицидное и микробостатическое действие на микроорганизмы и подавляющие рост и размножение некоторых опухолей.

Идея антибиотикотерапии


- ▶ 1871-1872 гг В.Манассеин и А.Полотебнов описали лечебные свойства зеленой плесени
- ▶ 1884 г Л.Пастер впервые наблюдал микробный антагонизм
- ▶ 1894 г И.Мечников обнаружил антагонизм молочнокислых и гнилостных бактерий

История открытия антибиотиков

- ▶ 1929 гг А.Флеминг изучение антибактериальных свойств зеленой плесени и открытие пенициллина
- ▶ 1940 г Г.Флори, Э.Чейн и Н.Хитли получили очищенный пенициллин
- ▶ 1942 г. С.Ваксман преложил термин *антибиотик* (греч. *анти*-против, *биос* –жизнь)
 - 1945 г. А.Флеминг, Г.Флори и Э.Чейн Нобелевская премия за открытие пенициллина

ОТКРЫТИЕ АНТИБИОТИКОВ

А. Флеминг в 1928 г. наблюдал зоны лизиса стафилококка в чашках, случайно проросших зеленой плесенью. Выделенный штамм плесени губительно действовал и на другие микробы.

А.Флеминг (1881 — 1955) английский бактериолог.

(1906 - 1979), (1898 – 1968), английский биохимик, английский патолог и микробиолог в 1938 году получили пенициллин в пригодном для инъекций виде.

Флори Хоуард Уолтер

Нобелевская премия по физиологии и медицине в 1945 году совместно с Александром Флемингом за открытие и синтез пенициллина.

Классификация антибиотиков по источникам получения

- Микробного происхождения
 - -из актиномицетов (стрептомицин, тетрациклин)
 - -из бактерий (полимиксин, грамицидин и др.)
 - -из грибов (пенициллин, цефалоспорины и др.)
- Растительного происхождения (фитонциды)
- Животного происхождения (интерферон, экмолин)

Классификация антибиотиков по способам получения

- **Биологический синтез** (пенициллин)
- **Биосинтез с последующими химическими** модификациями (полусинтетические антибиотики
 - бензилпенициллин, ампициллин, оксациллин
- **Химический синтез** (синтетические *аналоги* природных антибиотиков левомицетин)

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

• По происхождению:

Способ получения		Продуцент	Примеры	
•	Природные (биосинтетические)	• Собственно бактерии	• Грамицидин С, полимиксин	
		• Актиномицеты • Грибы	 Стрептомицин, эритромицин, тетрациклины и др. Бензилпенициллин, цефалоспорины, фузидиевая кислота 	
•	Полусинтетические (комбинация биосинтеза и химического синтеза	• Продукты модификации молекул природных антибиотиков	 Оксациллин, ампициллин, гентамицин, рифампицин и др. 	
•	Синтетические	• Аналоги природных антибиотиков, синтезированных химическим путем	• Левомицетин, амикацин	

Классификация антибиотиков по спектру активности и по

 Широкого спектра (аминогликозиды и тетрациклины)

Узкого спектра (полимиксин)

типу действия вактерицидные спектра (фунгицидные) — козиды и пенициллин, цефалоспорины

• Бактериостатические (фунгистатические) — тетрациклины, левомицетин

Классификация антибиотиков по химической структуре (1)

Бета-лактамы - основу молекулы составляет бета-лактамное кольцо. Действуют бактерицидно. К ним относятся:

- пенициллины: природные бензилпенициллин, депо-препараты бициллин, кислотоустойчивые феноксиметилпенициллин, пенициллиназоустойчивые узкого спектра (метициллин и оксациллин) и широкого спектра (ампициллин и амоксициллин), антисинегнойные (карбенициллин), комбинированные, в состав которых включены ингибиторы бета-лактамаз (амоксициллин+клавулановая кислота, амоксициллин + сульбактам).
- цефалоспорины имеют широкий спектр, но более активны в отношении грамотрицательных бактерий. Различают 4 поколения: 1-е более активны в отношении грамположительных бактерий и чувствительны к бета-лактамазам (цефазолин), 2-е более активны к грамотрицательным бактериям и более устойчивы к ферменту (цефуроксим), 3-е более активны к грамотрицательным бактериям и высоко устойчивы к ферменту (цефотаксим), 4-у действуют на грамположительные бактерии, некоторые грамотрицательные и синегнойную палочку, резистетны к бета-лактамазам (цефипим).
- карбапенемы имеют самый широкий спектр действия и резистентны к бета-лактамазам (*имипенем*)
- монобактамы активны против грамотрицательных бактерий, в том числе синегнойной палочки, и резистентны к бета-лактамазам (азтреонам).

Цефалоспорины

Пинт проточни	Поколение цефалоспоринов				
Путь введения	I	II	III	IV	
Парентеральный (внутривенно, внутримышечно)	Цефазолин Цефалотин Цефапирин Цефалоридин Цефрадин	Цефуроксим ³ Цефамандол Цефокситин Цефоницид Цефпрозил Цефметазол Цефотетан Цефоранид	Цефотаксим Цефтриаксон⁴ Цефтризоксим Цефоперазон ⁵ Цефтазидим ⁶ Цефтизоксим Моксалактам	Цефепим ⁷ Цефпиром	
Энтеральный (per os)	Цефалексин Цефадроксил ² Цефрадин	Цефаклор Цефуроксим аксетил Лоракарбеф Цефпрозил	Цефиксим Цефподоксим проксетил Цефтибутен Цефетамет- пивоксил		

Классификация антибиотиков по химической структуре (2)

- ► Гликопептиды крупные молекулы, которые не проходят через поры грамотрицательных бактерий, поэтому имеют узкий спектр действия (ванкомицин)
- Аминогликозиды в состав молекулы входят сахара, имеют широкий спектр, бактерицидны (стрептомицин, гентамицин)
- Тетрациклины имеют в составе 4 цикличных соединения, широкого спектра (тетрациклин, диоксициклин)
- Макролиды и азалиды семейство больших макроциклических молекул широкого спектра действия, бактериостатики (эритромицин, азитромицин, кларитромицин)
- Линкозамиды бактериостатики, подобны макролидам, эффективны против анаэробов (линкомицин, клиндамицин).

Классификация антибиотиков по химической структуре (3)

- Левомицетины имеют нитробензеновое ядро, что придает им токсичность, бактериостатики (левомицетин/хлорамфеникол).
- Рифамицины бактерицидны, широкого спектра действия, эффективны против микобактерий туберкулеза (рифампицин)
- Полипептиды бактерицидные антибиотики узкого спектра действия, действуют только против грамотрицательных бактерий, токсичны, применяются наружно (полимиксин)
- Полиены высокотоксичные противогрибковые препараты, чаще применяются местно (нистатин, амфотеррицин В).
- Прочие антибиотики (фузидиевая кислота).

Основные группы синтетических химиотерапевтических препаратов

- ▶ Сульфаниламиды основу препарата составляет парааминогруппа, которая действует как аналог или антагонист парааминобензойной кислоты, необходимой для синтеза фолиевой кислоты (ко-тримоксазол, или бисептол).
- Хинолоны/фторхинолоны налидиксовая кислота, ципрофлоксацин, офлоксацин- действие широкого спектра, бактерицидные
- Нитроимидазолы бактерицидны, особенно активны против анаэробных бактерий, а также простейших *(метронидазол, трихопол).*
- ▶ Имидазолы противогрибковые препараты, подавляющие синтез ЦПМ (клотримазол)
- ► Нитрофураны применяют как уросептики (фурозалидон, фурадонин, фурагин)
- Оксазолидиноны (*линезолид*) спектр действия широкий, тип действия цидный

Индукторы интерферона интерфероногены

- Синтез интерферона индуцируется при заражении клеток вирусами
- Синтез интерферона усиливается также под влиянием индукторов интерферона - РНК, сложных полимеров и пр.
- Такие индукторы интерферона получили название интерфероногенов.
- В настоящее время в медицинской практике широко используются синтетические интерфероногены (циклоферон и др.)

Противовирусные химиотерапевтические препа<mark>раты</mark>

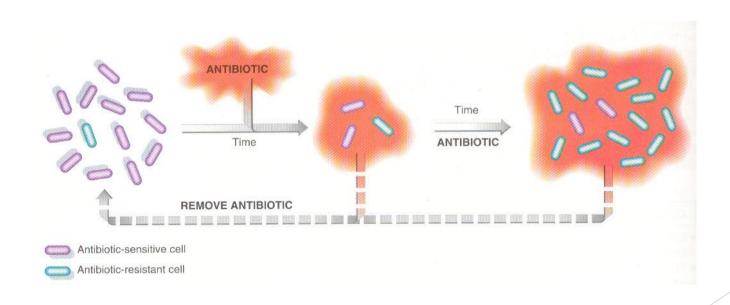
Противовирусные химиотерапевтические препараты - это синтетические лекарственные средства, используемые в основном для этиотропной терапии вирусных инфекций. Механизм их действия заключается в избирательном подавлении отдельных этапов репродукции вирусов без существенного нарушения жизнедеятельности клеток.

- Ингибиторы адсорбции вирусов (энфувиртил)
- Ингибиторы депротеинизации вирусов в клетке хозяина (амантадин и ремантадин)
- Ингибиторы ДНК-полимераз
 - аналоги нуклеозидов (идоксуридин, видарабин и др.)
 - избирательно действующие в зараженной вирусом клетке (ацикловир, ганцикловир, фамцикловир, рибавирин, фоскарнет и др.)
- Ингибиторы обратной транскриптазы азидотимидин (зидовудин), залцитабин, ламивудин и др.
- Ингибиторы вирусных протеаз (саквинавир, ритонавир и др.)
- Ингибиторы синтеза поздних вирусных белков (марборан и метисазон)

Осложнения антимикробной терапии и пути их предупреждения

Аллергические реакции

- назначение препаратов в соответствии и с индивидуальной чувствительностью пациента
- Дисбиозы и дисбактериозы
 - сочетание лечения основного заболевания с противогрибковой терапией.
 - применение пробиотиков,
 - использование по возможности препаратов узкого спектра действия
- Токсическое действие
 - принимать во внимание противопоказания и побочные эффекты


Со стороны микроорганизмов:

- Формирование L-форм и персистирующих форм микробов
- Формирование лекарственной устойчивости, в том числе антибиотикорезистентности

Лекарственная устойчивость микробов

- Природная устойчивость:
 - отсутствие мишени
 - бактериальная непроницаемость для данного препарата
- Приобретенная устойчивость:
 - Мутации под действием антибиотиков и селекция антибиотикорезистентных мутантов
 - Устойчивость, обусловленная R-плазмидами
 - Устойчивость, связанная с транспозонами, несущими **г**-гены

Селекция антибиотикорезистентных штаммов

Реализация приобретенной устойчивости к антибиотикам

- Модификация фермента-мишени
- Недоступность мишени за счет снижения проницаемости клеточной стенки
- Инактивация препарата бактериальными ферментами (например, β- лактамаза, аминогликозидмодифицирующие ферменты)

(Для борьбы с инактивирующим действием беталактамаз антибиотики комбинируют с такими ингибиторами β-лактамаз, как клавулановая кислота, сульбактам, тазобактам).

Тикарциллин - антибак гериально средство из группы пенициллинов широкого спектра действия. Клавулановая кислота - ингибитор лактамаз.

Пиперациллин + Тазобактам

Порошок для приготовления раствора для внутривенного введения 4,0 г + 0,5 г

1 Флакон

Комбинированный препарат амоксициллина и клавулановой кислоты - ингибитора бета-лактамаз.

Пиперациллин-Тазобактам— комбинированный антибактериальный препарат, содержащий пиперациллин — полусинтетический антибиотик широкого спектра действия, и тазобактам — ингибитор большинства β-лактамаз.

Определение чувствительности бактерий к антибиотикам методом диффузии в агар (метод дисков)

Метод серийных разведений для определения минимальной ингибирующей концентрации (МИК)

Принципы рациональной антибиотикотерапии

- Микробиологический принцип установить возбудитель болезни и определить его индивидуальную чувствительность к антибиотикам.
- Фармакологический принцип учесть фармакокинетику и фармакодинамику
- ► **Клинический принцип** учесть индивидуальные особенности состояния больного (иммунный статус, состояние почек и печени.
- **Эпидемиологический принцип** учитывать состояние резистентности микробных штаммов, циркулирующих в данном регионе, отделении, стационаре.
- Фармацевтический принцип учитывать срок годности и соблюдать правила хранения препарата.